Pernyataan 1 Perhatikan pernyataan untuk setiap bilangan asli n . Karena akan dibuktikan pernyataan untuk setiap bilangan asli n , yaitu n ≥ 1 , maka langkah pertamanya adalah buktikan benar. LANGKAH 1 Buktikan benar. Perhatikan pernyataan maka Ruas kiri 5 . Ruas kanan Karena ruas kiri = ruas kanan, maka benar. LANGKAH 2 Buktikan untuk sembarang bilangan asli k , jika bernilai benar mengakibatkan bernilai benar. Perhatikan pernyataan Asumsikan bernilai benar. Perhatikan Dari ruas kiri Sehingga didapatkan ruas kiri = ruas kanan. Maka, bernilai benar. Karena 1. benar. 2. Untuk sembarang bilangan asli k , jika bernilai benar mengakibatkan bernilai benar. Maka, benar untuk setiap bilangan asli n , menurut prinsip induksi matematika. Pernyataan 2 Perhatikan pernyataan untuk setiap bilangan asli n . Karena akan dibuktikan pernyataan untuk setiap bilangan asli n , yaitu n ≥ 1 , maka langkah pertamanya adalah buktikan benar. LANGKAH 1 Buktikan benar. Perhatikan pernyataan maka Ruas kiri 3 . Ruas kanan Karena ruas kiri = ruas kanan, maka benar. LANGKAH 2 Buktikan untuk sembarang bilangan asli k , jika bernilai benar mengakibatkan bernilai benar. Perhatikan pernyataan Asumsikan bernilai benar. Perhatikan Dari ruas kiri Sehingga didapatkan ruas kiri ≠ ruas kanan. Maka, bernilai salah. Karena 1. benar. 2. Namun untuk sembarang bilangan asli k , jika bernilai benar mengakibatkan bernilai salah. Maka, tidak benar untuk setiap bilangan asli n , menurut prinsip induksi matematika. Oleh karena itu, menggunakan induksi matematika, pernyataan yang bernilai benar ditunjukkan oleh nomor 1 saja. Jadi, jawaban yang tepat adalah A.
Volumebalok di bawah ini tidak kurang dari 50 m 3 . 5 m 3 m x + 2 m 3. Tuliskan kalimat berikut menjadi pertidaksamaan linear satu variabel. a. Dua kali suatu bilangan y lebih dari - 5 2 . b. Suatu bilangan z tidak lebih dari −10. 4. Manakah di antara ketiga pertidaksamaan berikut yang salah satu selesaiannya adalah −5? a. x + 12 7 b. Kelas 7 SMPBILANGAN BULAT DAN PECAHANOperasi Hitung CampuranManakah di antara pernyataan berikut yang benar untuk semua bilangan asli n? 1 2n^2+2n-1 ganjil 2 n-1^2+n genap 3 4n^2-2n genap 4 2n-1^2 genapOperasi Hitung CampuranBILANGAN BULAT DAN PECAHANBILANGANMatematikaRekomendasi video solusi lainnya0139Selisih dua bilangan adalah 3. Jika bilangan yang satu be...0100Hasil dari 5 - 3 X 4/-3 + - 2^2=0102Hasil dari 32+4 6+-3 x 9 adalah... a. 21 c. -21 ...0158Jembatan gantung terpanjang di dunia adalah Akashi Kaikyo...Teks videoHai kau Pren diketahui dari pertanyaan tersebut yang pertama di sini Jika untuk anemia adalah semua bilangan asli bilangan asli adalah dari 1 2 3 4 5 dan seterusnya untuk membuktikannya kita misalkan di sini hanya = 12 pernyataan yang pertama di sini Jika A = 1 maka 2 dikalikan 1 kuadrat + 2 x min 1 dikurangi 1 Maka hasilnya adalah 1 kuadrat adalah 12 dikalikan 1 adalah 2 ditambahkan 2 dikurangi 1 = nilainya adalah 3 disini adalah dan kemudian yang n = 2 maka disini 2 dikalikan 2 dikuadratkan ditambahkan 2 dikalikan 2kemudian dikurangi 1 sama dengan 2 dikalikan dengan 2 kuadrat = 42 kalikan 4 adalah 8 ditambahkan 224 kemudian dikurangi 1 hasilnya = 11 jadi dari sini merupakan bilangan sehingga dari sini untuk pernyataan yang benar yang pertama adalah pernyataan yang benar kemudian yang kedua Jika A = 1 maka di sini menjadi 1 dikurangi 1 dikuadratkan ditambahkan dengan 1 = 1 dikurangi 1 hasilnya nol dipangkatkan 2 = 0 + 1 = 1 adalah dan sedangkan= 2 maka nilainya adalah 2 dikurangi 1 dikuadratkan ditambah kan nilainya dengan 1 = 2 dikurangi 1 adalah 11 dikuadratkan = nilainya adalah 1 + 1 = 2 adalah biner sehingga dari sini untuk pernyataan yang kedua nilainya tidak konsisten. Nah yang pertama ganjil dan yang kedua genap jadi pernyataan tersebut adalah Kemudian dari sini untuk pernyataan yang ketiga yaitu jika N = 1 maka a dikalikan 1 kuadrat kemudian dikurangi 2 dikalikan 1 sama dengan 4 dikalikan 1 kuadrat adalah 1 maka 4 dikalikan 1Dikurangi 2 = 2 Nah di sini adalah kemudian Jika n = 2 maka 4 dikalikan 2 kuadrat dikurangi 2 dikalikan 2 sama dengan 2 kuadrat hasilnya 44 x 4 adalah 16 dikurangi 4 k = nilainya adalah 12 ini adalah pernyataan yang ketiga disini adalah benar selanjutnya. Jika pernyataan yang keempat kita misalkan A = 1 maka 2 dikalikan 1 dikurangi 1 dikuadratkan = 2 kalikan 1 adalah 22 dikurangi 1 hasilnya 1 dikuadratkan = 1 adalah ganjil selanjutnya Jika n = 22 dikalikan 2 dikurangi 1 dikuadratkan = 2 dikalikan 24 dikurangi 1 adalah 3 dikuadratkan = bila nanti sini juga ganjil sehingga untuk pernyataan yang keempat adalah salah dari sini untuk pernyataan yang keempat salah maka pernyataan yang benar adalah 1 dan 3 jadi jawabannya adalah sekian sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi AntarmolekulKarenaakan dibuktikan pernyataan untuk setiap bilangan asli , yaitu , maka salah. Karena salah, maka tidak terbukti benar untuk setiap bilangan asli , menurut prinsip induksi matematika. Dengan demikian, menggunakan induksi matematika, pernyataan yang bernilai benar ditunjukkan oleh nomor 1) saja. Jadi, jawaban yang tepat adalah A. 92.
untuk a bilangan asli, pernyataan berikut yang tidak benar adalah1. untuk a bilangan asli, pernyataan berikut yang tidak benar adalah2. jika A={bilangan asli}, maka pernyataan berikut yang benar adalah tolong jawab y soalnya untuk besok tolong....3. Manakah pernyataan berikut ini yg merupakan pernyataan bernilai benar?berikan alasan mu. a. k= setiap k bilangan asli b. ×=×,untuk setiap ×bilangan bulat4. 76. Untuk a bilangan asli. pernyataan berikutyang tidak benar adalahC. 04 = = 1D. 1= 0B. a = 165. untuk a bilangan asli pernyataan berikut yang tidak benar adalah a. 1³ =1 b. a⁰=1 c. 0³=0 d. 1³=0plis Jawab yang bener nanti kuFollow dan jawaban tercerdas6. untuk a bilangan asli, pernyataan berikut yang tdk benar a. 1 pangkat a = 1b. a pangkat nol = 1c. 0 pangkat a = 0 d. 1 pangkat a = 0 tolong jawab yang benar ya 7. membuktikan dengan induksi matematis . buktikan bahwa pernyataan berikut bernilai benar. a 1per + 1per + 1 per +.... + 1 per n n+1 = n per n+ 1 untuk setiap bilangan asli8. nilai mutlak untuk setiap bentuk berikut ini a. 2√3-3 b. -8n,n bilangan asli c. 12 x -3 2-5 2. Manakah pertanyaan berikut ini yang merupakan pernyataan bernilai benar? Berikan alasan mu a. k=k, untuk setiap bilangan asli b. x= x,untuk setiap x bilangan bulat x = -2,makan x =-29. untuk a bilangan asli,pernyataan berikut yang tidak benar = Dengan menggunakan prinsip induksi matematika tunjukkan bahwa pernyataan berikut ini benar untuk semua bilangan asli a. 3 adalah faktor dari n³+2nb. 4 adalah faktor dari 5n+3c. 3 adalah faktor dari n³+3n+2n11. membuktikan dengan induksi matematis. buktikan bahwa pernyataan berikut bernilai benar a 1^2 + 2^2 + 3^2 +.... +n^2 = n n+1 2n+1 per 6 ,untuk setiap bilangan asli n12. Pernyataan berikut yang tidak benar adalah a untuk n anggota bilangan asli maka buka kurung 2 per 1 tutup kurung selalu ganjil B jika n anggota bilangan ganjil maka n pangkat 2 selalu genap C semua bilangan asli selain 1 memiliki faktor prima D ada Bilangan genap yang habis dibagi bilangan ganjil13. tentukan nilai kebenaran pernyataan-pernyataan berikuta. untuk semua x bilangan asli berlaku 2x lebih besar xb. tidak ada bilangan nyata n yang memenuhi persamaan n²-2n tambah 3 = 0c. luas persegi yang panjangnya sisinya 4 cm adalah 40 cm²14. membuktikan dengan induksi matematis. buktikan bahwa pernyataan berikut bernilai benar a 1^2 + 2^2 + 3^2 +.... +n^2 = n n+1 2n+1 per 6 ,untuk setiap bilangan asli n b1^3 + 2^3 + 3^3 +.... +n^3 = 1 + 2 + 3 +.....+n^2 ,untuk setiap bilangan asli n c + + + .... + n n+1 = n n+1 n +2 per 3 untuk setiap bilangan asli15. 9. Dari beberapa pernyataan untuk setiap bilangan asli n, maka faktorial dari suatu bilangan berikut yng hasilnya benar adalah.... A. 2! = 2 C. 9! = E. 5! = 220 = B. 7! = = D. 4! = 24 =16. Pernyataan berikut yang tidak benar adalah ... A. Untuk n ∈ bilangan asli, maka 2n + 1 selalu ganjil. B. Jika n ∈ bilangan ganjil, maka [tex]\text{n}^2[/tex] selalu genap. C. Semua bilangan asli selain 1 memiliki faktor prima. D. Ada bilangan genap yang habis dibagi bilangan 1.2m³=..... a bilangan asli,pernyataan berikut yg tidak benar adalah... 18. Gunakan induksi matematika untuk membuktikan kebenaran pernyataan berikuta. 2+6+8+...+ pangkat n-1 = 3 pangkat n-1 untuk sebarang bilangan asli pangkat n - 3 pangkat n habis dibagi 5, untuk sebarang bilangan asliminta bantuan nya yaaaa19. nilai mutlak untuk setiap bentuk berikut ini a. 2√3-3 b. -8n,n bilangan asli c. 12 x -3 2-5 2. Manakah pertanyaan berikut ini yang merupakan pernyataan bernilai benar? Berikan alasan mu a. k=k, untuk setiap bilangan asli b. x= x,untuk setiap x bilangan bulat x = -2,makan x =-220. Manakah pernyataan berikut ini yang merupakan pernyataan bernilai benar? berikan alasanmua. k = k, untuk setiap k bilangan aslib. x = x, untuk setiap x bilangan bulatc. jika x = -2 maka x = -2d. jika 2t - 2 >0, maka 2t - 2 = 2t - 2e. jika x + a = b, dengan a,b,x bilangan real, maka nilai x yg memenuhi hanya x = b - a 1. untuk a bilangan asli, pernyataan berikut yang tidak benar adalahJawabD. [tex]1^{a}[/tex] = 0Penjelasan dengan langkah-langkahBilangan 1 dipangkatkan dengan segala bilangan sama dengan dengan langkah-langkahD, bilangan asli adalah bilangan bulat positif yang dimulai dari 1, sehingga pernyataan D. [tex]1^a = 0[/tex] apabila a bernilai 1, maka pernyataan tersebut bernilai 1 bukan 0 2. jika A={bilangan asli}, maka pernyataan berikut yang benar adalah tolong jawab y soalnya untuk besok tolong.... jawaban adalah c maaf kalau salah 3. Manakah pernyataan berikut ini yg merupakan pernyataan bernilai benar?berikan alasan mu. a. k= setiap k bilangan asli b. ×=×,untuk setiap ×bilangan bulat jawabannyaB.x=x,untuk setiap x bilangan kalau salahb.x=x, untuk setiap bilangan bulat karna apabila bilangan bulat biasanya di lambangkan dengan tanda x 4. 76. Untuk a bilangan asli. pernyataan berikutyang tidak benar adalahC. 04 = = 1D. 1= 0B. a = 16Jawaban BENER YE GUYS 5. untuk a bilangan asli pernyataan berikut yang tidak benar adalah a. 1³ =1 b. a⁰=1 c. 0³=0 d. 1³=0plis Jawab yang bener nanti kuFollow dan jawaban tercerdasJawabanUntuk [tex] a[/tex] bilangan asli pernyataan berikut yang tidak benar adalah [tex] d. \ {1}^{3} = 0[/tex]Penjelasan dengan langkah-langkah[tex]a. \ {1}^{3} = 1[/tex] →BENAR[tex] = 1 \times 1 \times 1[/tex][tex] = 1 \\ [/tex][tex] \\ [/tex][tex] b. \ {a}^{0} = 1[/tex] →BENAR[tex] \frac{ {a}^{2} }{ {a}^{2} } = {a}^{2 - 2} = {a}^{0} = 1[/tex]misalkan [tex]a = 3[/tex][tex] → \ \frac{ {3}^{2} }{ {3}^{2} } = {3}^{2 - 2} = {3}^{0} = 1[/tex][tex] atau [/tex][tex] → \ \frac{ {3}^{2} }{ {3}^{2} } = \frac{3 \times 3}{3 \times 3} = \frac{9}{9} = 1[/tex][tex] \\ [/tex][tex] c. \ {0}^{3} = 0[/tex] →BENAR[tex] = 0 \times 0 \times 0[/tex][tex] = 0[/tex][tex] \\ [/tex][tex] d. \ {1}^{3} = 0[/tex] →TIDAKBENAR[tex] = 1 \times 1 \times 1[/tex][tex] = 1[/tex][tex] \\ [/tex]Untuk [tex] a[/tex] bilangan asli pernyataan berikut yang tidak benar adalah [tex] d. \ {1}^{3} = 0[/tex]SEMOGA MEMBANTU ^^ 6. untuk a bilangan asli, pernyataan berikut yang tdk benar a. 1 pangkat a = 1b. a pangkat nol = 1c. 0 pangkat a = 0 d. 1 pangkat a = 0 tolong jawab yang benar ya jawaban nya b. A pangkat nol =1 7. membuktikan dengan induksi matematis . buktikan bahwa pernyataan berikut bernilai benar. a 1per + 1per + 1 per +.... + 1 per n n+1 = n per n+ 1 untuk setiap bilangan asli Aku sudah pernah diberikan pada lampiran berikut 8. nilai mutlak untuk setiap bentuk berikut ini a. 2√3-3 b. -8n,n bilangan asli c. 12 x -3 2-5 2. Manakah pertanyaan berikut ini yang merupakan pernyataan bernilai benar? Berikan alasan mu a. k=k, untuk setiap bilangan asli b. x= x,untuk setiap x bilangan bulat x = -2,makan x =-2 1. -8n. n= bil. asli bearti -8 kk + 12k + 1/6 ........... + k + 1^2=> k + 1 [ k2k + 1/6 + k + 1 ]=> k + 1 k2k + 1 + 6k + 1 /6 => k + 1 2k^2 + k + 6k + 6/6=> k + 1 2k^2 + 7k + 6 / 6=> k + 1 k + 22k + 3 / 6=> k + 1 k + 1 + 1 2k + 2 + 1 / 6=> k + 1 k + 1 + 1 2k + 1 + 1/6 ..... terbukti 12. Pernyataan berikut yang tidak benar adalah a untuk n anggota bilangan asli maka buka kurung 2 per 1 tutup kurung selalu ganjil B jika n anggota bilangan ganjil maka n pangkat 2 selalu genap C semua bilangan asli selain 1 memiliki faktor prima D ada Bilangan genap yang habis dibagi bilangan ganjilJawabanB. karena bilangan ganjil dikuadratkanakan tetap ganjil hasilnya. contoh 1²=13²=9 membantu a. benarb. benarc. salah a. benarb. benarc. salah 14. membuktikan dengan induksi matematis. buktikan bahwa pernyataan berikut bernilai benar a 1^2 + 2^2 + 3^2 +.... +n^2 = n n+1 2n+1 per 6 ,untuk setiap bilangan asli n b1^3 + 2^3 + 3^3 +.... +n^3 = 1 + 2 + 3 +.....+n^2 ,untuk setiap bilangan asli n c + + + .... + n n+1 = n n+1 n +2 per 3 untuk setiap bilangan asli Ketiga jawaban diberikan di lampiran berikut 15. 9. Dari beberapa pernyataan untuk setiap bilangan asli n, maka faktorial dari suatu bilangan berikut yng hasilnya benar adalah.... A. 2! = 2 C. 9! = E. 5! = 220 = B. 7! = = D. 4! = 24 =Penjelasan dengan langkah-langkahA. 2! = 2. √C. 9! = ×E. 5! = 220. ×B. 7! = ×D. 4! = 24. √ket √ = hasil yg benar x = hasil yg salah yang C seharusnya 9! = 9×8×7×6×5×4×3×2×1 = E seharusnya5! = 5×4×3×2×1 = 120Yang B seharusnya 7! = 7×6×5×4×3×2×1 = 5040Penyelesaian Soal [tex] \\ [/tex]Dari beberapa pernyataan untuk setiap bilangan asli n, maka faktorial dari suatu bilangan berikut yng hasilnya benar adalah .. A. 2! = 2 B. 7! = C. 9! = 4! = 24E. 5! = 220 [tex] \\ [/tex]Pembuktian [tex] \\ [/tex][A].[tex] \\ [/tex][tex] \tt = 2 ! [/tex][tex] \tt = 2 \times 1[/tex][tex] \tt = 2 \ benar[/tex][tex] \\ [/tex][B].[tex] \\ [/tex][tex] \tt = 7! [/tex][tex] \tt = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1[/tex][tex] \tt = 42 \times 5 \times 4 \times 3 \times 2 \times 1[/tex][tex] \tt = 210 \times 4 \times 3 \times 2 \times 1[/tex][tex] \tt = 840 \times 3 \times 2 \times 1[/tex][tex] \tt = \times 2 \times 1[/tex][tex] \tt = \times 1[/tex][tex] \tt = \ salah[/tex][tex] \\ [/tex][C].[tex] \\ [/tex][tex] \tt = 9! [/tex][tex] \tt = 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1[/tex][tex] \tt = 72 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1[/tex][tex] \tt = 504 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1[/tex][tex] \tt = \times 5 \times 4 \times3 \times 2 \times 1[/tex][tex] \tt = \times 4 \times 3 \times 2 \times 1[/tex][tex] \tt = \times 3 \times 2 \times 1[/tex][tex] \tt = \times 2 \times 1[/tex][tex] \tt = \times 1[/tex][tex] \tt = \ salah[/tex][tex] \\ [/tex][D].[tex] \\ [/tex][tex] \tt = 4! [/tex][tex] \tt = 4 \times 3 \times 2 \times 1[/tex][tex] \tt = 12 \times 2 \times 1[/tex][tex] \tt = 24 \times 1[/tex][tex] \tt = 24 \ benar[/tex][tex] \\ [/tex][E].[tex] \\ [/tex][tex] \tt = 5! [/tex][tex] \tt = 5 \times 4 \times 3 \times 2 \times 1[/tex][tex] \tt = 20 \times 3 \times 2 \times 1[/tex][tex] \tt = 60 \times 2 \times 1[/tex][tex] \tt = 120 \times 1[/tex][tex] \tt = 120[/tex][tex] \\ [/tex]Kesimpulan [tex] \\ [/tex]Maka, faktorial dari suatu bilangan berikut yng hasilnya benar adalah \\ [/tex]Detail Jawaban [tex] \\ [/tex]Kelas Matematika. Materi Kaidah Pencacahan, Soal Kategorisasi kunci Dari beberapa pernyataan untuk setiap bilangan asli n, maka faktorial dari suatu bilangan berikut yng hasilnya benar adalah.[tex] \\ [/tex][tex]{ \boxed{ \tt \tiny{ \color{pink}{by ciecilia188}}}}[/tex] 16. Pernyataan berikut yang tidak benar adalah ... A. Untuk n ∈ bilangan asli, maka 2n + 1 selalu ganjil. B. Jika n ∈ bilangan ganjil, maka [tex]\text{n}^2[/tex] selalu genap. C. Semua bilangan asli selain 1 memiliki faktor prima. D. Ada bilangan genap yang habis dibagi bilangan ganjil dikuadratkan n² hasilnya selalu ganjil B 17. 1.2m³=..... a bilangan asli,pernyataan berikut yg tidak benar adalah... no 1. 8mno 2. 1000 semoga membantu 18. Gunakan induksi matematika untuk membuktikan kebenaran pernyataan berikuta. 2+6+8+...+ pangkat n-1 = 3 pangkat n-1 untuk sebarang bilangan asli pangkat n - 3 pangkat n habis dibagi 5, untuk sebarang bilangan asliminta bantuan nya yaaaaPenjelasan dengan langkah-langkahb 8^n - 3^n habis dibagi 5 untuk n= 18¹-3¹ = 5 habis dibagi 5untukn=k8^k-3^k=5mmaka8^k=5m+3^kuntukn=k+18^k+1-3^k+ = 3^k-1untuk n=k+1lanjutkan 19. nilai mutlak untuk setiap bentuk berikut ini a. 2√3-3 b. -8n,n bilangan asli c. 12 x -3 2-5 2. Manakah pertanyaan berikut ini yang merupakan pernyataan bernilai benar? Berikan alasan mu a. k=k, untuk setiap bilangan asli b. x= x,untuk setiap x bilangan bulat x = -2,makan x =-2 Kategori Matematika Materi Nilai mutlak Kelas X SMA Kata kunci Himpunan penyelesaian Perhitungan Terlampir 20. Manakah pernyataan berikut ini yang merupakan pernyataan bernilai benar? berikan alasanmua. k = k, untuk setiap k bilangan aslib. x = x, untuk setiap x bilangan bulatc. jika x = -2 maka x = -2d. jika 2t - 2 >0, maka 2t - 2 = 2t - 2e. jika x + a = b, dengan a,b,x bilangan real, maka nilai x yg memenuhi hanya x = b - a jawabannya d, karena jika t nya bernilai positif maka mutlaknya pasti bernilai positif cl5KB6o.